
NSS-23235

ITERATIVE FINITE ELEMENT SOLVER ON TRANSPUTER NETWORKS*

Albert Danial and James Watson

Sparta, Inc.
Huntsville AL 35805

ABSTRACT

Iterative methods have been proven effective in obtaining solutions to
large, sparse systems of linear equations such as those generated by

finite element and finite difference methods. In addition to being
efficient on sequential computers, iterative methods have inherent

parallelism that suggests a strong potential for acceleration using
parallel processing computer networks. These factors make iterative

methods ideal candidates for parallel finite element/finite difference

solvers. Here, we describe the parallelism inherent in the Conjugate

Gradient method and discuss the initial results of a parallel

implementation on a network of twelve transputers.

The high efficiencies obtained (a speed-up of 11.2 was gained with 12

processors) indicate that significant speed-up can be achieved with larger

transputer arrays if communication overhead can be kept low. To this

effect, we suggest a method of communication that allows large,

dynamically reconfigurable transputer arrays to exchange data in log4 N
steps for N processors.

PRECEDING PAGE BLANK NOT FILMED

*Work done for the Sturctural Dynamics Branch under NASA Contract

NAS3- ; technical monitor: Louis J. Kiraly.

1-113

Introduction

As part of a NASA innovative research grant to develop a transputer-based
finite element computing engine, researchers at SPARTA have investigated
techniques and computing methods which show promise for efficient parallel
execution. Here, we discuss recent work done to evaluate a parallel
implementation of the Conjugate Gradient (CG) method on a network of
transputers. Preconditioning is implied in the context of finite element
applications, but is beyond the scope of this presentation. For direct
factorization methods, see [George, et al, 1986], and for polynomial
preconditioning, see [Allen, 1987].

The CG method has several attributes that make it attractive for solving

finite element problems• It is robust even for poorly-conditioned

problems, requires less memory than direct methods since there is no

matrix fill-in, and works well for widely banded problems such as those

created by three dimensional models• In addition, the CG method is well

suited to adaptive analysis methods which slightly modify the stiffness
matrix after each solution until descretization errors are minimized. In

this case, rather than completely resolving the modified system of
equations, the CG method can use the most recent solution as an excellent

initial guess and will consequently converge quickly. Finally, because of

its heavy usage of inherently parallel matrix-vector and vector-vector

operations, the CG method shows great potential for efficient concurrent

processing.

Here we describe the parallelism inherent to the method, demonstrate why
communication determines efficiency, discuss our transputer implementation

and show how transputers can be used in massive arrays before
communication becomes a problem. Using the fractional summation method
described here, we predict that a 1024 transputer network rated at 1.5

gigaflops, could attain a speed-up of 929 and provide a sustained

computational rate on the order of 1 gigaflop.

CG Method for Solving Finite Element Problems

• Robust for poorly conditioned problems

Lower memory requirements than direct methods

• Ideal solution method for adaptive analysis

• Efficient for widely banded, 3-D problems

Computations are completely parallel

Twelve Transputer Implementation

• Speed-up of 11.2 obtained; higher possible

• Efficiency depends on method of communication

CG Method + Transputers + Link Switcher =
Gflop Finite Element Solver

Dynamically reconfigurable arrays allow efficient
communication

• Could attain near-linear speed-up with thousands

of processors rated with Gflops of power.

1-114

Conjugate Gradient Method

The CG method can be described by 18 single operation steps.
given below, use the following notation:

These steps,

[A] = stiffness matrix

{b!o : force vector
{x_ = initial guess at

a displacement vector

{x} : displacement vector

(the solution)

{p},{r},{s},{t} = work vectors

a,_,u,v,w : scalars
k = iteration counter

i •

2.

3.

4.

5.

6.

7.

8.

9.

10

11

12

13

14

15

16

17

18

19

k = 0

{p}O : [A] {x}°

[r} ° : {b} - [p}O

{p}O = {r}O

{s}k = [A] {p}k

uk = {r}k*{r} k

vk = {p}k*{s}k

k k/ k= u v

{t} k = ak*{p} k

{x} k+l = {x} k + {t} k

Stop if ll{t}kll<tolerance

{s} k : wk*{s} k

{r} k+l : {r} k - {s} k

vk+1 = {r}k+1*{r} k+l

_k = vk+l/uk

{p]k = Bk,{p}k

{p}k+l = {r}k+1 + {p}k

increment k

matrix-vector multiply

vector subtraction

vector equivalence

matrix-vector multiply

vector dot product

vector dot product

scalar division

vector scaling

vector addition

vector comparison

vector scaling

vector subtraction

vector dot product

scalar division

vector scaling

vector addition

Go to step 5.

The following operations are performed at each iteration:

1 Matrix-vector multiplication

3 Vector dot products

3 Vector scalings
3 Vector additions

1 Vector comparison

Each one of these computations can be performed in parallel.

1-115

Parallelism in the Conjugate Gradient Method

The single most time consuming step is the matrix-vector multiply at step
5. Fortunately, it is also the operation most easily performed in
parallel: each node receives a horizontal slice of the stiffness matrix

and a complete copy of the {p} vector, then independently multiplies the
matrix slice with the corresponding terms in {p} to obtain a partial

solution for {s}. The vast majority of the remaining steps involve other

vector operations, so a first glance might suggest that the algorithm is
trivial to complete in parallel since the vectors can be divided up among

the processors to be operated on concurrently.

This is only partially true on a local-memory processing network, however,
since there are data dependencies between steps that require the

prQcessors to exchange data. After each processor computes its segment of

{s} at step 5 for example, it can only perform one or two vmore steps
before it needs a complete copy of {s} or a complete sum for v_ to perform

the vector scaling at step 9. This type of data dependency (where each
processor has a fraction of a value yet requires the sum of all fractions

on every processor to continue), the only type encountered in the CG
method, is resolved by a process called fractional summation. As its name

implies, each processor simultaneously sends, receives and sums individual
fractions of the value, preferably in a well-coordinated manner, until

each processor has the complete sum. These communication steps can impede

performance of a parallel CG solver, and must proceed as quickly as

possible. The formula and graph below illustrate the effects of
communicate time on speed-up.

T
C

T
P

= Time spent communicating

= Time spent executing parallel
tasks (all compute time in

CG method)

N - Number of processors

Speed-up =

N

T
C

T
P

D.

0
¢D
(2.
U)

+ 1

Speed-Ups for Various Ratios of Overhead

1oo

90

80

70

60

50

40

30

20

10

0
I I ' ' I

0 10 20 30 40 50 60 70 80 90 100

Linear Speed-up

Tcfl'p=.O01

Tc/Tp=.005

Tc/Tp=.01

Tc/Tp=.05

Tc/Tp=. 1

Number of Processors

1-116

Transputer Network and Test Problem

The parallel processing network we used to implement the CG method

consisted of twelve INMOS T414 transputers as shown below. Each

transputer has 256 Kbytes of local RAM memory and four links capable of

transferring data to other transputers at a rate of 10 Mbits/second.

A simple test problem consisted of a 2-D square plate subdivided into 81

isoparametric, four-node elements yielding 200 degrees of freedom. The

lower left corner of the plate was pinned, the lower right corner

constrained from vertical motion and the top right corner had a horizontal

applied load.

Although the stiffness matrix was tightly banded, the implemented CG code
carried all matrix and vector operations out in full, as if the matrix
were dense.

TWELVE TRANSPUTER NETWORK

ARRANGED IN A DOUBLE-RING GRID

m

i

<
J

sl_4m_

_EACH BOX

REPRESENT$

ONE T414

"_ TRANSPUTERWITH 2511 Kb_OO

OF RAM

TEST PROBLEM

_{
200 degrees of freedom

!-117

"--_ 10

Results

Three versions of the CG method were implemented: a fully sequential

version to provide a reference for performance, a parallel version written

with Adnet (a high-level communications environment) and a second parallel

version using direct, hardcoded communications that sent messages around

a ring. The programs all stopped after 73 iterations, when changes to the

displacement vector were less than a tolerance of 0.00001. The execution

times are tabulated and shown graphically below.

Method: Sequential

Number of

Processors

Parallel with

Adnet

Sec. (speed up)

Parallel without

Adnet

Sec. (speed up)

1 102.2

4 26.61 (3.84)
5 22.53 (4.54)

6 19.60 (5.21)

7 17.91 (5.71)
8 16.22 (6.30)
9 14.98 (6.82)

I0 14.14 (7.22)
ii 13.29 (7.69)

12 12.87 (7.94) 9.13 (11.2)

Despite the impressive speed-up obtained, a timing analysis of the data
exchanges showed that still higher speed-ups are possible. When done

independently, the data exchanges around the processor ring take less than
one-thousandth of the time calculations require, indicating that

efficiencies of 0.989, or a speed-up of 11.87, should be possible on the

network of twelve transputers. Further analyses of our implementation are

being conducted to pinpoint the causes for the sub-optimum run times.

EXECUTION TIME AND SPEED UP VERSUS NUMBER

OF PROCESSORS FOR THE TEST PROBLEM

30

20

N
N 15
Z
0

10-
O
LU
X

I.U 5-

0 I4 1o 2
NUMBER OF PROCESSORS

O" DIRECT LOW LEVEL COMMUNICATIONS

1-118

12

11

10

9

,,-, 7
w
m 6-

_ 5-

4-

3"

2-

1

LINEAR SPEEDUP ////_

I

/
/

/
/

/
I I I " I I

2 4 6 8 10

NUMBER OF PROCESSORS

IT]-COMMUNICATION HANDLED BY A
CONVENIENT MESSAGE PASSING

SUBROUTINE

Fractional Summation on a Large, Dynamically Reconfigurable Network

If every processor in a network were directly connected to all other

processors, fractional summation would be trivial -- each node would

simply send its fraction out on every out-link and collect fractions from

other nodes from its in-links. Few parallel processors, however, have

more than 10 links, so direct connection schemes can only be used on small

networks. Networks of indirectly connected processors perform fractional

summation in a series of transmit and receive steps and can spend

considerable amounts of time communicating. Large networks require more

communication steps than small networks, making high speed-ups

increasingly difficult to obtain. The table below lists the number of

communication steps required to perform a fractional summation on several

types of network topologies.

N = Number of processors

S = Number of steps required for
fractional summation

Topology

Ring

Double-ring

grid

Shuffled

exchange

[Allen, 1987]

Hypercube

Dynamically

reconfigurable

transputer array

S

N-1

2log 2 N

log 2 N

log N
4

Number of steps
required if

N = 1024

1023

64

20

10

5

1-119

Example of Fractional Summation on a Dynamically Reconfigurable Network

Although transputers have only four links each, programmable link
switches such as the INMOS C004 and the Unisys Switch Slice allow programs

to change the network configuration during execution. Configuration

changes can be made in one microsecond and can take place while the

processors are busy computing, so negligible overhead is incurred. These

link switches are extremely powerful devices and make possible several

advanced types of network data distribution, one of which is fractional

summation on a dynamically reconfigurable network. The basic idea behind

this kind of fractional summation is to group together small islands of

directly connected processors, allow them to exchange values, then
reshuffle the processor connections so that each processor is relinked

with a completely different set of processors. In this manner, the number

of communication steps required will be reduced to _ N where L isthe number of links each processor uses to exchange a!I+L)

The example below illustrates how a network of 16 transputers connected to

a programmable link switch can perform a fractional summation in two

steps.

STEP 1

Network configuration: Fully connected sets
of four processors. Set J contains the
processors whose ID's satisfy the integer
division equation

ID
J= 4

The sums on each
processor will then be:

Node 0:0+1+2+3

Node 1:0+1+2+3
Node 2:0+1+2+3

Node 3:0+1+2+3

Node 4:4+5+6+7
Node 5:4+5+6+7

Node 6:4+5+6+7

Node 7:4+5+6+7
Node 8:8+9+10+11

Node 9:8+9+10+11

Node 10:8+9+10+11
Node 11:8+9+10+11

Node 12:12+13+14+15

Node 13:12+13+14+15
Node 14:12+13+14+15

Node 15:12+13+14+15

1-120

Example of Fractional Summationon a Dynamically Reconfigurable Network
(Continued)

Here, only three of the four links on each transputer are being used
(L=3). A free link is reserved on each node to allow the node to send
control information to the link switches, or to some master transputer
which controls the network configuration. If a timing scheme is used to
control link switchings, all four links can be used (L=4) and the number
of communication steps will be reduced to log5 N.

The methods and equipment described here can be used to assemble a massive

CG solver capable of obtaining three orders of magnitude of speed-up, and

sustaining on the order of one gigaflop of double precision computations.

An array of 1024 T800 transputers with 1 Mbyte of RAM connected by 196

programmable link switches, should be able to run a CG algorithm with an

overhead fraction (Tc/Tp) between 0.0001 and 0.001.

These overhead fractions correspond to a speed-up range from 506 to 929.

STEP 2

Network configuration: Fully connected sets of
four processors. Set J contains the processors
[J, J +4, J +2(4), J +3(4)]

F

F

After Step 2, all of the
processors will have
the complete sum:

Node 0: 0+1+2+3+4+5+6+7+8+

9+10+11+12+13+14+15
Node 1: 0+1+2+3+4+5+6+7+8+

9+10+11+12+13+14+15

Node 2: 0+1+2+3+4+5+6+7+8+

9+10+11+12+13+14+15
Node 3: 0+1+2+3+4+5+6+7+8+

9+10+11+12+13+14+15

Node 4: 0+1+2+3+4+5+6+7+8+
9+10+11+12+13+14+15

l

e

e

Node 15: 0+1+2+3+4+5+6+7+8+

9+10+11+12+13+14+15

1-121

Conclusion

The parallel CGmethod has all the attributes of an ideal finite element
solver: its computations are completely parallel enabling many processors
to obtain large speed-ups; its iterative nature makes it the solution
method of choice for adaptive analysis, where small refinements to the
stiffness matrix only require few additional computations to obtain a new

solution; and finally, the matrices can be stored in compact form since
the method does not fill them in as direct methods do.

The only overhead incurred in the parallel CG method is the communication
time it takes to resolve data dependencies. It was demonstrated that even

inefficient ring communication schemes could attain high speed-ups - our
code ran 11.2 times faster on 12 transputers than it did on one. Speed-up

for the CG method is inversely proportional to the time spent

communicating during fractional summation, so large networks must have

efficient methods of exchanging data in order to maintain high speed-ups.

Programmable link switches, devices that permit connections between

transputers to be made through software control, can be used in large

transputer networks to distribute data faster than any other local-memory

MIMD architecture. This permits larger networks to operate at a given

communicate-to-compute ratio. This permits large networks of transputers

to operate at the same overhead levels as much smaller, hardwired

networks. Fractional summation on a dynamically reconfigurable

network was shown to require only log4 N communication steps - half the

number a hypercube of the same size needs. The resulting reduction in

communication overhead should enable more than one thousand transputers to

run parallel CG code with an efficiency above 90%. At the current price

of a 1 Mbyte T800 transputer rated at 1.5 megaflops, a 1 gigaflop finite
element solver could be built for less than $1,000.000.

CG Method Excellent for Parallel Finite Element Solvers

• Computations are completely parallel

• Natural solution technique for adaptive analysis
• Can solve larger problems than direct methods in the same amount of RAM

Results for 12 Transputer Implementation

• Speed-up of 11.2 obtained; many improvements possible
• Demonstrated that efficiency depends on fraction of communication

time to compute time

Dynamically Reconfigurable Transputer Arrays

• Reduce communication overhead

• Permit thousand-processor networks to function efficiently
• Could make possible a Gflop finite element machine for less than $1,000,000

1-122

References

lo Allen, R., 1987, "Matrix/Vector Multiplication and the Conjugate
Gradient Algorithm on Transputers," presented at the Occam Users

Group Meeting, September 29, 1987, Chicago, IL.

o George, A. et al., 1986, "Sparse Cholesky Factorization on a Local

Memory Multiprocessor," Oak Ridge National Laboratory TM-9962, Oak
Ridge, TN.

1-123

